US ERA ARCHIVE DOCUMENT # TRACING NITROGEN MOVEMENT IN FORESTED WATERSHEDS: ## PRELIMINARY RESULTS FROM THE SLEEPERS RIVER RESEARCH WATERSHED, VT Berkeley Stephen D. Sebestyen¹, Elizabeth W. Boyer², James B. Shanley³, Nobuhito Ohte⁴, Daniel H. Doctor⁵, & Carol Kendall⁵ State University of NY College of Environmental Science & Forestry, Syracuse, NY; ² UC Berkeley, Berkeley, CA; ³ USGS, Montpelier, VT; ⁴ Kyoto University, Kyoto, Japan; ⁵ USGS, Menlo Park, CA ### RODUCTION man activities have increased (nitrogen) availability in the vironment & stream export of solved N has increased in many tions r work assesses how combined drological & biogeochemical ocesses control variation of eam NO₃⁻ (nitrate) ocentrations over multiple time les (event, seasonal, & annual) e used high-frequency asurements (hydrological, emical, & isotopic tracers) to gerprint both water flow paths 1 N sources to the stream from landscape #### **NITRATE ISOTOPES & SNOWMELT** - Stream NO₃⁻ concentrations were strongly influenced by atmospheric NO₃⁻ during early snowmelt - During peak snowmelt, NO₃⁻ was from atmospheric & soil (microbially nitrified) sources - In late snowmelt, stream NO₃⁻ was from soil & groundwater NO₃⁻ sources #### NITRATE & ANTECEDENT DISCHARGE - NO₃⁻ concentrations in the stream are highest when soil N concentrations are highest, highlighting the importance of terrestrial-aquatic linkages - Soil NO₃⁻ is highest during the dormant season when biotic uptake is minimal & creates a pool of N that is available to flush to streams with snowmelt - NO₃⁻ is higher in soils & streamflow after dry antecedent moisture conditions than after wet Cumulative flow of water at the W-9 weir was calculated for the 7 day interval prior to water sampling. Low cumulative flow indicates low water fluxes and dryer conditions prior to sample collection #### **IMPLICATIONS** - Stream NO₃⁻ variation is influenced by hydrological flushing of source areas that vary with wetness - Highest NO₃⁻ concentrations occur with the first pulses of high flow after dry periods, highlighting moisture controls - During high flow, water moved rapidly to streams via preferential flowpaths (overland & shallow subsurface) and thereby shortcuts retention in the landscape - Atmospheric deposition is an important N source to the landscape as reflected in stream chemistry and especially during early snowmelt when infiltrating water has a short residence time in the landscape